Свежие записи


« | Главная | »

Задачу можно решить быстро

Автор: admin | 08 Ноя 2009

Не редко при обучении в университетах ученики обязаны ознакомиться с задачами, в которых необходимо найти экстремальное значение цели, при имеющихся ограничениях. Как пример, следует отыскать максимально возможную прибыль и экстремальные затраты, при фиксированой стоимости сырья, доставки и т.д. Чаще всего, данный тип задач рассчитывается следующим способом.

Записывается функция, которую нужно максимизировать или минимизировать, вслед за этим составляются уравнения и неравенства для одз. Следом надлежит определиться с алгоритмом для решения полученной задачи. Если функция, для которой нужно найти экстремум и ограничения не содержат степеней выше первой, то эти задачи зовутся задачами линейного программирования.

Для их решения удобно употребить симплекс-метод. Симплекс метод подразумевает перебор по имеющимся принципам крайних точек ограниченной области с целью отыскания той, которая приносит экстремум функции цели. Для функции цели с численностью переменных две и менее можно использовать графический способ.

Наиболее же изученным считается алгоритм с использованием симплекс–таблиц. Данный путь считается легким для применения, но достаточно ресурсоемким. На решение такой задачи без применения вычислительной техники можно убить кучу трудовых ресурсов, но так и не прийти к правильному ответу.

Хорошо, что имеется конкретный метод решения, а значит можно использовать программные продукты. В глобальной сети находятся страницы, которые имеют возможность отображать не только результат, но и пошаговое решение с разъяснениями, что весьма удобно. Частным случаем задачи ЛП выступает транспортная задача. Эта специфика также имеет выверенные алгоритмы нахождения ответа. Нелинейное программирование подразумевает применение более мудеренных способов.

Очевидно, каждый из нас в период обучения в школе и в средних специальных и высших учебных заведениях сталкивался с такой проблемой как решение уравнений и СЛАУ. У некоторыхнаступают заморочки даже с уравнениями ниже третье степени, особенно если есть комплексные корни.

Хотя тут все достаточно просто, но, если необходимо без потери времени вычислить корни уравнения второй степени, то почему бы не прибегнуть к услугам халявной программой без долгой установки. Вписываем данные и у нас целое решение. Чудесненько! Аналогично и с уравнениями степени ниже пятой.

Увы, но нахождение ответа уравнений пять и более высоких степеней нуждаются в отдельно подходе. В отношении СЛАУ, здесь громадное множество направлений. Как правило для решения систем уравнений используются методы Гаусса, Крамера и матричный. Наиболее же простой для уразумения алгоритм Гаусса. Сущность красуется в постепенном удалении переменных.

Другие методы требуют знания работы с определителями. Получить решение популярными способами возможно непосредственно на интернет ресурсе бесплатно.

Одна из максимально общеизвестных ответвлений алгебры в online калькуляторах, это матрицы и определители. Здесь нет надобности изобретать велосипед. Все способы до тонкостей представлены в разных математических изданиях, и когда у вас существует курс высшей математики, то педагог всенепременно попросит расчитать транспонированную матрицу или определить определитель.

Думаете легко и просто, да, но только для незначительлной по величине матрицы. Вся тернистость состоит в огромных количествах, хоть и немудренных калькуляций. Ежели определить сумму матриц очень заурядно, то вот высчитать определитель доставит кучу неприятностей. Посему, посещаем сайт, вводим необходимые данные, и переписываем полное решение задачи.

  • Добавить ВКонтакте заметку об этой странице
  • Мой Мир
  • Facebook
  • Twitter
  • LiveJournal
  • MySpace
  • FriendFeed
  • В закладки Google
  • Google Buzz
  • Яндекс.Закладки
  • LinkedIn
  • Reddit
  • StumbleUpon
  • Technorati
  • del.icio.us
  • Digg
  • БобрДобр
  • MisterWong.RU
  • Memori.ru
  • МоёМесто.ru
  • Сто закладок

Темы: Саморазвитие | Ваш отзыв »

Комментарии закрыты.